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PREFACE 

Learning in Energy-Efficient Neuromorphic Computing:  
Algorithm and Architecture Co-Design 

 
In 1987 when I was wrapping up my doctoral thesis at the University of Illinois, I had a 

rare opportunity to listen to Prof. John Hopfield of California Institute of Technology 
describing his groundbreaking research in neural networks to spellbound students in the 
Loomis Laboratory of Physics at Urbana-Champaign. He didactically described how to design 
and fabricate a recurrent neural network chip to rapidly solve the benchmark Traveling 
Salesman Problem (TSP), which is provably NP-complete in the sense that no physical 
computer could solve the problem in asymptotically bounded polynomial time as the number 
of cities in the TSP increases to a very large number.  

This discovery of algorithmic hardware to solve intractable combinatorics problems 
was a major milestone in the field of neural networks as the prior art of perceptron-type feed-
forward neural networks could merely classify a limited set of simple patterns. Though the 
founder of neural computing, Prof. Frank Rosenblatt of Cornel University had built Mark 1 
Perceptron computer in late 1950’s when the first waves of digital computers such as IBM 650 
were just commercialized, subsequent advancements in neural hardware designs were stymied 
mainly because of lack of integration capability of large synaptic networks by using the then 
technology, comprising vacuum tubes, relays and passive components such as resistors, 
capacitors and inductors. Therefore, in 1985 when AT&T Bell Labs fabricated the first solid-
state the proof-of-concept TSP chip by using MOS technology to verify Prof. John Hopfield’s 
neural net architecture, it opened the vista for solving non-Boolean and brain-like computing 
on silicon. 

Prof. John Hopfield’s seminal work established that if the “objective function” of a 
combinatorial algorithm can be expressed in quadratic form, the synaptic links in a recurrent 
artificial neural network could be accordingly programmed to reduce (i.e., locally minimize) 
the value of the objective function through massive interactions between the constituent 
neurons. Hopfield’s neural network consists of laterally connected neurons that can be 
randomly initialized and then the network can iteratively reduce the intrinsic Lyapunov energy 
function of the network to reach a local minima state. Notably, the Lyapunov function 
decreases in a monotone fashion under the dynamics of the recurrent neural networks where 
neurons are not provided with self-feedback1.  

                         
1 In the paper, titled: P. Mazumder and J. Yih, “A New Built-in Self-Repair Approach to VLSI Memory Yield 
Enhancement by Using Neural-Type Circuits,” IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems, Vol. 12, No. 1, Jan. 1993, pp. 124-136, we demonstrated that the quality of solutions 
achieved by the Hopfield network could be improved considerably by selectively providing self-feedback to allow 
neurons to escape the local minima. Such method is akin to hill climbing in a gradient descent search that often is 
trapped in a local minimum point. As self-feedback to neurons impair the stability of a Hopfield neural network, 
we did not apply any self-feedback to neurons until the network converged to a local minimum state. And, then we 
pulled out the network out of the local minimum by elevating the energy of the network through the hill climbing 
mechanism. By using this innovative technique, we showed in the above paper that yield of VLSI memories could 
be ameliorated by increasing the repair by about 25%. 



Prof. Hopfield used a combination of four separate quadratic functions to represent the 
objective function of the TSP. The first part of the objective function ensures that the energy 
function minimizes if the traveling salesman traverses cities exactly once, the second part 
ensures that the traveling salesman visits all cities in the itinerary, the third part ensures that no 
two cities are visited simultaneously, and the fourth part of the quadratic function is designed 
to determine the shortest route connecting all cities in the TSP. Because of massive 
simultaneous interactions between neurons through the connecting synapses that are precisely 
adjusted to meet the constraints in the above quadratic functions, a simple recurrent neural 
network could rapidly generate a very good quality solution. However, unlike well-tested 
software procedures such as simulated annealing, dynamic programming, and the branch-and-
bound algorithm, neural networks generally fail to find the best solution because of its 
simplistic connectionist structures. 

Therefore, after listening to Prof. Hopfield’s fascinating talk I harbored a mixed feeling 
about the potential benefit of his innovation. On one hand, I was thrilled to learn from his 
lecture how computationally hard algorithmic problems could be solved very fast by using 
simple neuromorphic CMOS circuits having very small hardware overhead. On the other hand, 
I thought that the TSP application that Prof. Hopfield selected to demonstrate the ability of 
neural networks to solve combinatorial optimization problems was not the right candidate, as 
software algorithms are well crafted to obtain nearly the best solution that the neural networks 
can hardly match. I started contemplating on developing self-healing VLSI chips where the 
power of neural-inspired self-repair algorithms could be used to automatically restructure 
faulty VLSI chips. Low overhead and ability to solve a problem concurrently through parallel 
interactions between neurons are two salient features that I thought could be elegantly 
deployed for automatically repairing VLSI chips by built-in neural net circuitry. 

Soon after I joined the University of Michigan as an assistant professor, working with 
one of my doctoral students2, at first I developed a CMOS analog neural net circuitry with 
asynchronous state updates, which lacked robustness due to process variation within a die.  In 
order to improve the reliability of the self-repair circuitry, an MS student3 and I designed a 
digital neural net circuitry with synchronous state updates. These neural circuits were designed 
to repair VLSI chips by formulating the repair problem in terms of finding the node cover, 
edge cover, or node pair matching in a bipartite graph. In our graph formalism, one set of 
vertices in the bipartite graph represented the faulty circuit elements, and the other set of 
vertices represented the spare circuit elements. In order to restructure a faulty VLSI chip into a 
fault-free operational chip, the spare circuit elements were automatically invoked through 
programmable switching elements after identifying the faulty elements through embedded 
built-in self-testing circuitry.  

Most importantly, like the TSP problem, the 2-D array repair can be shown to be an 
NP-complete problem because the repair algorithm seeks the optimal number of spare rows 

                         
2 P. Mazumder and J. Yih, “Fault-Diagnosis and Self-Repairing of Embedded Memories by Using Electronic 
Neural Network,” Proc. of IEEE 19th Fault-Tolerant Computing Symposium, Chicago, Jun. 1989, pp. 270-277. 
3 M.D. Smith and P. Mazumder, “Analysis and Design of Hopfield-type Network for Built-in Self-Repair of 
Memories,” IEEE Transactions on Computers, Vol. 45, No. 1, Jan. 1996, pp. 109-115. 



and spare columns that can be assigned to bypass faulty components such as memory cells, 
word-line and bit-line drivers, and sense amplifier bands located inside the memory array. 
Therefore, simple digital circuits comprising counters and other blocks woefully fail to solve 
such intractable self-repair problems. Notably, one cannot use external digital computers to 
determine how to repair embedded arrays, as input and output pins of the VLSI chip cannot be 
deployed to access the fault patterns in the deeply embedded arrays.  

 In 1989 and 1992, I received two NSF grants to expand the neuromorphic self-healing 
design styles to a wider class of embedded VLSI modules such as memory array4, processors 
array5, programmable logic array, and so on6. However, this approach to improving VLSI chip 
yield by built-in self-testing and self-repair was a bit ahead of its time as the state-of-the-art 
microprocessors in early 1990’s contained only a few hundred thousands of transistors as well 
as the sub-micron CMOS technology was relatively robust.  Therefore, after developing the 
neural-net based self-healing VLSI chip design methodology for various types of embedded 
circuit blocks, I stopped working on CMOS neural networks. I was not particularly interested 
in pursing applications of neural networks for other types of engineering problems, as I wanted 
to remain focused in solving emerging problems in VLSI research.  

 On the other hand, in late 1980’s there were mounting concerns among CMOS 
technology prognosticators about the impending red brick wall heralding the end of the 
shrinking era in CMOS.  Therefore, to promote several types of emerging technologies that 
might push the frontier of VLSI technology, Defense Advanced Research Projects Agency 
(DARPA) in USA had initiated (around 1990) the Ultra Electronics: Ultra Dense, Ultra Fast 
Computing Components Research Program. Concurrently, the Ministry of International Trade 
& Industry (MITI) in Japan had launched the Quantum Functional Devices (QFD) Project. 
Early successes with a plethora of innovative non-CMOS technologies in both research 
programs led to the launching of National Nanotechnology Initiative (NNI), which is a U.S. 
Government research and development (R&D) initiative, involving 20 departments and 
independent agencies to bring about revolution in nanotechnology to impact the industry and 
society at large.  

During the period of 1995 and 2010, my research group had at first focused on quantum 
physics based device and circuit modeling for quantum tunneling devices, and then we 
extensively worked on cellular neural network (CNN) circuits for image and video processing 
by using 1-D (double barrier resonant tunneling device), 2-D (self-assembled nanowire) and 3-
D (quantum dot array) constrained quantum devices. Subsequently, we developed learning 
based neural network circuits by using resistive synaptic devices (commonly known as 
memristors) and CMOS neurons. We also developed analog voltage programmable 
nanocomputing architectures by hybridizing quantum tunneling and memristive devices in 
computing nodes of two-dimensional processing element (PE) ensemble. Our research on 
                         
4 P. Mazumder and J. Yih, “Built-In Self-Repair Techniques for Yield Enhancement of Embedded Memories,” 
Proceedings of IEEE International Test Conference, Sep. 1990, pp. 833-841. 
5 P. Mazumder and J. Yih, “Restructuring of Square Processor Arrays by Built-in Self-Repair Circuit,” IEEE 
Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 12, No. 9, Sept. 1993, pp. 1255-1265. 
6 P. Mazumder, “An integrated built-in self-testing and self-repair of VLSI/WSI hexagonal arrays,” Proceedings 
of IEEE International Test Conference, Sep. 1992, pp. 968-977 



nanoscale neuromorphic circuits will soon be published in our new book, titled: 
“Neuromorphic Circuits for Nanoscale Devices”, River Publishing, UK, 2019.  

After spending a little over a decade developing neuromorphic circuits with various 
types of emerging nanoscale electronic and spintronic devices, I decided to embark research on 
learning-based digital VLSI neuromporphic chips using nanaoscale CMOS technology in both 
sub-threshold and super-threshold modes of operation. My student and coauthor of this book, 
Dr. Nan Zheng conducted his doctoral dissertation work on architectures and algorithms for 
digital neural networks. We started our design from both machine learning and biological 
learning perspectives to design and fabricate energy-efficient VLSI chips using TSMC 65 nm 
CMOS technology.  

We captured the actor-critic type reinforcement learning 7  and an example of temporal 
difference (TD) learning with off-line policy updating, called Q-learning8 on VLSI chips from 
the machine learning perspectives. Further, we captured spiking correlation based synaptic 
plasticity commonly used in biological unsupervised learning applications. We also formulated 
hardware-friendly spike-timing-dependent plasticity (STDP) learning rules9 which achieved a 
classification rates of 97.2% and 97.8% for the one-hidden-layer and two-hidden-layer neural 
networks, respectively on the Modified National Institute of Standards and Technology 
(MNIST) database benchmark. The hardware-friendly learning rule enabled both energy-
efficient hardware design10 as well as implementations that were robust to the process-voltage-
temperature (PVT) variations associated with chip manufacturing11. We demonstrated that the 
hardware accelerator VLSI chip for actor-critic network solved some control-theoretic 
benchmark problems by emulating the adaptive dynamic programming (ADP), which is at the 
heart of reinforcement learning (RL) software program. However, compared with traditional 
software RL running on a general-purpose processor, the VLSI chip accelerator operating at 
175 MHz achieves two orders of magnitude improvement in computational time while 
consuming merely 25 mW12. 

The chip layout diagrams included in the Preface contain sample of numerous digital 
neural network chips using CMOS technology that my research group has designed over the 
course of last 35 years. On the top row: Self-healing chip was designed in 1991 to repair faulty 
VLSI memory arrays automatically by running node-covering algorithms on a bipartite graph 
                         
7 N. Zheng and P. Mazumder, “Hardware-Friendly Actor-Critic Reinforcement Learning Through Modulation 
of Spiking-Timing Dependent Plasticity,” IEEE Transactions on Computers, Vol. 66, No. 2, Feb. 1 2017. 
8 I. Ebong and P. Mazumder, “Iterative Architecture for Value Iteration using Memristors,” IEEE Conference on 
Nanotechnology, Toronto, Canada, 2014, pp. 967-970. 
9 N. Zheng and P. Mazumder, "Online Supervised Learning for Hardware-Based Multilayer Spiking Neural 
Networks Through the Modulation of Weight-Dependent Spike-Timing-Dependent Plasticity," in IEEE 
Transactions on Neural Networks and Learning Systems, vol. 29, no. 9, pp. 4287-4302, Sept. 2018. 
10	N. Zheng and P. Mazumder, "A Low-Power Hardware Architecture for On-Line Supervised Learning in Multi-
Layer Spiking Neural Networks," 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 
Florence, 2018, pp. 1-5.	
11 N. Zheng and P. Mazumder, "Learning in Memristor Crossbar-Based Spiking Neural Networks through 
Modulation of Weight Dependent Spike-Timing-Dependent Plasticity," in IEEE Trans. on Nanotechnology, 2018. 
12 N. Zheng and P. Mazumder, "A Scalable Low-Power Reconfigurable Accelerator for Action-Dependent 
Heuristic Dynamic Programming," in IEEE Trans. on Circuits and Systems I: Regular Papers, vol. PP, no. 99, pp. 
1-12.

 



representing the set of faulty components and the available spare circuit elements. The spike-
timing dependent plasticity (STDP) chip was designed in 2013 for controlling the motion of a 
virtual insect from an initial source to the selected destination by avoiding collisions while 
navigating through a set of arbitrary shaped blocked spaces. Deep learning chip described in 
the previous paragraph was designed in 2016.  

On the bottom row is shown the reinforcement learning (RL) chip described in above 
paragraph and designed in 2016. Also, included on the bottom row are two ultra-low-power 
(ULP) CMOS chips, which were biased in subthreshold mode for wearable applications in 
health care. In one application, Kohonen’s self-organizing map (SOM) neural networks was 
implemented to classify electro-cardiogram (ECG) waveforms, while the body-sensing 
network with wireless transceiver was designed to sense analog neuronal signals by using 
implantable multi-electrode sensor and provide the digitized data through built-in wake-up 
transceiver to doctors who could monitor the efficacy of drugs at the neuronal and synaptic 
levels in brain-related diseases such as schizophrenia, chronic depression, Alzheimer disease 
and so on.  

Initially, when we decided to publish a monograph highlighting our work in the form of 
CMOS neuromorphic chips for brain-like computing, we wanted to aggregate various results of 
the cited papers in the Preface to compose the contents of the book. However, in the course of 
preparation of the manuscript, we modified our initial narrow goal, as it would be rather 
limiting to adopt the book in a regular course for teaching undergraduate and graduate students 
about the latest generation neural networks with learning capabilities.		

Instead, we decided to write a comprehensive book on energy-efficient hardware design for 
neural networks with various types of learning capability by discussing expansive ongoing 
research in neural hardware. This is evidently a Herculean task warranting mulling through 
hundreds of archival sources of references and describing co-design and co-optimization 
methodologies for building hardware neural networks that can learn to perform various tasks. 
We attempted to provide a comprehensive perspective, from high-level algorithms to low-level 
implementation details by covering many fundamentals and essentials in neural networks (e.g., 
deep learning), as well as hardware implementation of neural networks. In a nutshell, the 
present version of the book has the following salient features: 

• It includes cross-layer survey of hardware accelerators for neuromorphic algorithms, 
• It covers the co-design of architecture and algorithms with emerging devices for much-

improved computing efficiency, as well as 
• It focuses on the co-design of algorithms and hardware, which is paramount for 

deploying emerging devices such as traditional memristors or diffusive memristors for 
neuromorphic computing. 

 
Finally, due to stringent time constraint to complete this book in conjunction with 

concomitant commitment to concurrently finish the complementary book (“Neuromorphic 
Circuits for Nanoscale Devices”, River Publishing, UK, 2019), the present version of the book 
has been completed without describing the didactic materials pedagogically as expected in a 
textbook along with exercise problems at the end of each chapter. Hopefully, those goals will 



be achieved in the next edition of the book after gathering valuable feedback from students, 
instructors, practicing engineers and other readers. I shall truly appreciate if you give me such 
guiding feedback, both positive and negative, which will enable me to prepare the Second 
Edition of the book. My contact information is included below for your convenience.  

	
Pinaki Mazumder    February 14th, 2019 
 
Address: 
 
4765 BBB Building 
Division of Computer Science and Engineering 
Department of Electrical Engineering and Computer Science 
University of Michigan, Ann Arbor, MI 48109-2122 
Ph: 734-763-2107 
E-mail: mazum@eecs.umich.edu, pinakimazum@gmail.com 
Website: http://www.eecs.umich.edu/~mazum 
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Neural-Inspired CMOS Chips Designed by Mazumder Group 

Self-Healing Chip, 1991 Synaptic Plasticity Chip, 2013 Deep Learning  Chip, 2016 

Actor-Critic Reinforcement 
Learning Chip, 2016 

Figure 4.4: The proposed ECG clustering SOM chip layout.
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Self-Organizing Map Chip 
for  ECG Clustering, 2016  
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Figure 2.11: The proposed BSN SoC layout.

heat source (i.e. thermoelectric generator). The harvested power from the state of

the art is greater than 20 µW [38][39]. Therefore, the proposed SoC can perpetually

be operated by energy harvesting. As shown in Figure 2.11, the proposed SoC area

is 1920⇥1920 µm2 and designed in CMOS 65nm LP (1P9M6X1Z1U).
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